the tribe to whom the female belonged. This concludes the the ceremony, and the young man then returns with his wife to his own tribe. He is, however, laid under this peculiar injunction, that he must not see any more his mother-in-law; and the following circumstance in connection with this fact, has been related to me by Mr. Grant, an eye-witness. "A mother-in-law having been descried approaching, a number of leubras formed a circle around the young man, and he himself covered his face with his hands;-this, while it screened the old lady from his sight, served as a warning for her not to approach, as she must never be informed by a third party of the presence of her son-in-law."

The natives, however, of this, as of every other settled part of Australia, are fast disappearing before the rapid encroachments of the white man; in perfect accordance with that universal but mysterious law which governs civilization wherever the white man has planted its flag, sweeping the backward races from the face of the earth.

Art. VI.-Original Rules and Tables adapted to Cases of Sidelong Ground in the Setting Out and Computation of Railway Earthworks. By Clement Hodgeinson, C.E., District Surveyor.

Having originally investigated and computed the following formule and tables for my own use, I venture to submit them to those members of the Philosophical Society who belong to the Engineering Profession.

Before giving my tables for determining the side distances that define, on sidelong ground, the edges of railway cuttings and embankments on both sides of the central line of equidistant stakes, I will briefly state the methods that have been generally followed for determining side distances.

First.-Instrumentally; by means of the well known combination of graduated bars and ares devised by Sir John Macneil, which, when the sidelong inclination on either side of any stake had been determined by a clinometer or other instrument, admitted of being adjusted so as to show by inspection, on a graduated bar, the required side distance. Sir John Macneil's instrument is not however applicable to those constantly recurring cases in which a
railway is partly in cutting and partly in embankment on the same side of a centre stake.

Second.-By successive approximations with the aid of the spirit-level. This method, which has been found well adapted for uneven ground, has been explained in detail in the work of Mr. Frederick Sims, C.E., lately Inspector of Railways for the Hon. East India Company; and has been very frequently employed by other engineers. I however noticed, some years ago, that his rule for determining the side distances, when the cross section showed both cutting and embankment on the same side of any centre stake, was totally wrong, and had occasioned errors of several feet in side distances set off for the South Eastern Railway. As Mr. Simm's work has passed through several editions, and as the erroneous rule alluded to has been since given in another work brought out by the well known publisher, Mr. Weale, I trust this passing allusion to it may not be considered uncalled for.*

Third.-By plotting the cross sections of the ground upon a large scale, and taking the side distances from the diagrams.

Fourth.-By various rules of thumb in vogue among contractors, and not admitting of mathematical demonstration.

Having considered it would be preferable to employ tabulated quantities for determining side distances, in lieu of employing Macneil's instrument, I have derived from the following formula the annexed tables of multipliers, and I have found that by using these multipliers (which are also applicable to those cases wherein Macneil's instrument fails to be of service), the required side distances can be computed and set off on the ground with more rapidity and certainty than by an instrument whose bars and arcs have to be adjusted at every stake.

Let a b c d (Fig. II.) represent a portion of the cross section of a railway cutting on one side of the centre stake at H: the ground, in this diagram, converging from the centre stake towards the plane of base at formation level. Draw

[^0]Hi L, D O, parallel to base A C, and D K perpendicular to H L. Now let $\frac{b}{3}$ denote half base or \mathbf{B} C.
h the height в \boldsymbol{H} at centre stake.
m : 1 rate of inclination of slopes.
δ angle of inclination of sidelong ground.
x the required horizontal side distance, or CD
Then D K $=x \operatorname{tang} \delta$

$$
\begin{aligned}
& \mathrm{DK}=\frac{\mathrm{KL}}{m} \frac{\frac{\delta}{2} h+m-x}{m} \\
& x \operatorname{tang} \delta=\frac{\frac{\delta}{2}+h m-x}{m} \\
& x=\frac{b}{2}+h m\left(\frac{1}{1+\text { tang } \delta \cdot m}\right)
\end{aligned}
$$

In Fig. III., in \cdot which the sidelong inclination diverges from the centre stake in reference to the plane of the base, we obtain, in a similar manner,
Side distauce or $x=\frac{b}{2}+h m\left(\frac{1}{1-\operatorname{tang} \delta . m}\right)$
In Fig. IV. let the profile of the sidelong ground cross the half base, and occasion cutting and embankment on the same side of the centre stake.

Here $\mathrm{D} K+\mathrm{H} \mathbf{L}=\mathrm{H} \mathrm{L}$ tang δ.

$$
\begin{aligned}
& \mathrm{DK}=\mathrm{H} \mathrm{~L} \operatorname{tang} \delta-\mathrm{K} \mathrm{~L}=x \cdot \operatorname{tang} \delta-h \\
& \mathrm{DK}=\frac{\mathrm{CK}}{m}=\frac{x-b}{m} \\
& x . \operatorname{tang} \delta-h=\frac{x-b}{m} \\
& \quad x=b-h m\left(\frac{1}{1-\operatorname{tang} \delta \cdot m}\right)
\end{aligned}
$$

In Table No. I. I haye given values of $\frac{1}{1-\operatorname{tang} \delta . m}$ for the more ordinary slopes, and in Table No. II. similar values of
\qquad

To Railway Earthworks.
TABLE-No. I.
$\frac{1}{1-\operatorname{tang} \delta . m}$

micmivation.	slopes.			
	1 to 1	112 to 1	2 to 1	22 ${ }^{\frac{1}{2}}$ to 1
- 1				
$0-0$	1.000	$1 \cdot 000$	1.000	$1 \cdot 000$
$0 \quad 10$	$1 \cdot 003$	$1 \cdot 004$	1.006	$1 \cdot 009$
20	$1 \cdot 006$	$1 \cdot 009$	1.011	$1 \cdot 014$
30	$1 \cdot 009$	1.013	$1 \cdot 017$	1.021
40	1.012	1.017	1.023	1.028
50	1.015	1.022	1.029	$1 \cdot 036$
1-0	$1 ‘ 018$	$1 \cdot 027$	1:036	$1 \cdot 044$
10	$1 \cdot 021$	1.031	1.042	$1 \cdot 052$
20	1.024	1.035	1.048	$1 \cdot 060$
30	1.027	1.039	1.054	1.068
40	1.030	1.044	$1 \cdot 061$	1.077
50	1.033	1.049	$1 \cdot 068$	$1 \cdot 086$
2-0	1.036	$1 \cdot 054$	$1 \cdot 075$	$1 \cdot 096$
10	1.039	$1 \cdot 059$	1.081	$1 \cdot 105$
20	1.042	$1 \cdot 064$	-1.088	1-114
- 30	$1^{\text {¢ }} 045$	1.069	$1 \cdot 095$	$1 \cdot 123$
40	1.048	1.074	1-102	$1 \cdot 132$
50	$1 \cdot 051$	1.079	1-109	$1 \cdot 141$
3-0	$1 \cdot 055$	1.085	$1 \cdot 117$	$1 \cdot 151$
10	1.058	1.090	$1 \cdot 124$	$1 \cdot 161$
20	$1 \cdot 061$	$1 \cdot 095$	$1 \cdot 131$	$1 \cdot 171$
30	1.064	$1 \cdot 100$	1-139	$1 \cdot 181$
40	1.068	1.105	$1 \cdot 147$	$1 \cdot 191$
50	1.071	$1 \cdot 111$	$1 \cdot 155$	$1 \cdot 201$
4-0	1.075	$1 \cdot 117$	$1 \cdot 163$	$1 \cdot 212$
10	1.078	$1 \cdot 122$	$1 \cdot 171$	1.223
20	1.081	$1 \cdot 127$	$1 \cdot 179$	$1 \cdot 234$
30	1.084	$1 \cdot 133$	$1 \cdot 187$	$1 \cdot 245$
40	1.088	$1 \cdot 139$	$1 \cdot 195$	$1 \cdot 256$
50	1.092	$1 \cdot 145$	$1 \cdot 203$	$1 \cdot 268$
$5-0$	1.096	$1 \cdot 151$	1.212	$1 \cdot 280$
10	$1 \cdot 100$	$1 \cdot 157$	1.221	$1 \cdot 292$
20	1-103	$1 \cdot 163$	$1 \cdot 230$	$1 \cdot 304$
30	1-106	$1 \cdot 169$	$1 \cdot 239$	$1 \cdot 317$
40	$1 \cdot 110$	$1 \cdot 175$	1.248	$1 \cdot 330$
50	$1 \cdot 114$	1.181	1.257	1.343

TABLE-No. I.-continued.

incirnation.	Stopes.			
	1 to 1	1_{2}^{12} to 1	2 to 1	$2{ }^{\frac{1}{2}}$ to 1
$6-0$	$1 \cdot 118$	1.187	$1 \cdot 266$	$1 \cdot 356$
10	$1 \cdot 121$	$1 \cdot 193$	$1 \cdot 276$	$1 \cdot 370$
20	$1 \cdot 125$	1-199	1.285	1.384
30	1-129	$1 \cdot 205$	1.295	$1 \cdot 398$
40	$1 \cdot 132$	$1 \cdot 212$	1.305	1.413
50	$1 \cdot 136$	1.219	1.315	1.428
7-0	1.140	$1 \cdot 226$	1.325	1.443
10	$1 \cdot 143$	$1 \cdot 232$	1-335	1.458
20	$1 \cdot 147$	$1 \cdot 239$	1.345	1.174
30	1.151	$1 \cdot 246$	1.356	1.491
40	$1 \cdot 155$	$1 \cdot 253$	$1 \cdot 367$	1.508
50	1-159	$1 \cdot 260$	1.378	1.525
8-0	$1 \cdot 163$	1.267	$1 \cdot 390$	1.542
10	$1 \cdot 167$	1.274	$1 \cdot 402$	1.550
20	$1 \cdot 171$	1.281	1.414	1.578
30	$1 \cdot 175$	1.288	1.426	1.597
40	$1 \cdot 179$	$1 \cdot 296$	1.438	1.616
50	1.183	$1 \cdot 304$	$1 \cdot 451$	$1 \cdot 635$
$9-0$	$1 \cdot 188$	$1 \cdot 312$	$1 \cdot 464$	$1 \cdot 655$
10	1.192	$1 \cdot 319$	1.477	1.675
20	1.196	1-327	1.490	$1 \cdot 696$
30	$1 \cdot 200$	$1 \cdot 335$	$1 \cdot 503$	1.718
40	$1 \cdot 204$	$1 \cdot 343$	1.517	1.741
50	$1 \cdot 209$	$1 \cdot 351$	1.531	1.764
10-0	1.214	1.359	1.545	1.788
10	1.218	1-367	$1 \cdot 559$	1.813
20	$1 \cdot 222$	1.376	1.574	1.839
30	$1 \cdot 226$	$1 \cdot 385$	1-589	1.865
40	$1 \cdot 231$	1.394	1-604	1.892
50	1.236	1.403	1.680	1.919
11 - 0	$1 \cdot 241$	1.412	$1 \cdot 636$	1.947
10	1.245	$1 \cdot 421$	$1 \cdot 652$	1.976
20	1.250	$1 \cdot 430$	1.669	$2 \cdot 006$
30	1.255	1.439	$1 \cdot 686$	$2 \cdot 037$
40	$1 \cdot 260$	1.448	$1 \cdot 704$	2.069
50	1.265	$1 \cdot 458$	1.722	$2 \cdot 102$
12-0	$1 \cdot 270$	$1 \cdot 468$	$1 \cdot 740$	$2 \cdot 136$
10	1.275	1.478	1.759	$2 \cdot 171$
20	$1 \cdot 280$	1.488	1.779	$2 \cdot 207$
30	$1 \cdot 285$	1.498	1.799	$2 \cdot 244$
40	$1 \cdot 290$	1.508	1.819	$2 \cdot 283$
50	$1 \cdot 295$	1.519	$1 \cdot 840$	$2 \cdot 323$

Table-No. I.-continued.

inclimation.	sLopes.			
	1 to 1	$1 \frac{1}{2}$ to 1	2 to 1	$2 \frac{1}{2}$ to 1
,				
13-0	$1 \cdot 300$	$1 \cdot 530$	$1 \cdot 860$	$2 \cdot 365$
10	1.305	1.541	$1 \cdot 881$	$2 \cdot 408$
20	1-310	1.552	$1 \cdot 902$	2453
30	1315	1.563	I 924	2.600
40	$1 \cdot 0.20$	1.574	$1 \cdot 947$	$2 \cdot 549$
50	1-326	1.575	1-971	2.601
14-0	$1 \cdot 332$	$1 \cdot 597$	1.997	$2 \cdot 655$
10	$1 \cdot 337$	1.609	$2 \cdot 022$	$2 \cdot 711$
20	$1 \cdot 342$	1.621	$2 \cdot 048$	2.769
30	$1 \cdot 348$	1.633	$2 \cdot 074$	$2 \cdot 830$
40	$1 \cdot 354$	1.645	2.101	2.893
50	$1 \cdot 360$	$1 \cdot 658$	$2 \cdot 128$	2.960
15-0	$1 \cdot 366$	1.671	$2 \cdot 156$	3.030
10	$1 \cdot 372$	1.684	$2 \cdot 185$	3-104
20	$1 \cdot 378$	1.698	$2 \cdot 215$	$3 \cdot 182$
30	$1 \cdot 384$	1.712	$2 \cdot 246$	$3 \cdot 264$
40	$1 \cdot 390$	1.726	$2 \cdot 278$	$3 \cdot 350$
50	$1 \cdot 396$	1.740	$2 \cdot 310$	$3 \cdot 440$
16-0	I-400	1.754	$2 \cdot 344$	3.534
10	$1 \cdot 407$	1.769	$2 \cdot 380$	$3 \cdot 633$
20	$1 \cdot 414$	1.784	2417	$3 \cdot 740$
30	1.420	1.799	2.455	$3 \cdot 855$
40	$1 \cdot 426$	1.814	$2 \cdot 494$	$3 \cdot 978$
50	$1 \cdot 433$	1.830	2.534	$4 \cdot 109$
$17-0$	$1 \cdot 440$	1.846	2.575	$4 \cdot 250$
10	1.447	1.863	$2 \cdot 617$	$4 \cdot 402$
20	$1 \cdot 454$	1.880	$2 \cdot 661$	$4 \cdot 565$
30	$1 \cdot 461$	1.897	$2 \cdot 707$	4.739
40	$1 \cdot 468$	1.914	$2 \cdot 755$	4.924
50	$1 \cdot 475$	1.932	$2 \cdot 805$	$5 \cdot 120$
18-0	$1 \cdot 482$	1.950	$2 \cdot 856$	5.328

TABLE-No. II.
$\frac{1}{1+\tan g} \overline{\delta . m}$

sidelong inclination.	$\begin{aligned} & \text { SLIOPE } \\ & 1 \text { to } \end{aligned}$	$\begin{gathered} \text { SLOPE } \\ \mathbf{1}_{12}^{2} \text { to } \end{gathered}$	$\begin{aligned} & \text { SIOPE } \\ & 2 \text { to } \end{aligned}$	$\begin{aligned} & \text { SLOPE } \\ & 2_{2 \frac{1}{2}} \text { to } 1 \end{aligned}$
	$1 \cdot 000$	1.000	1.000	1.000
10	$\cdot 997$. 996	$\cdot 994$	$\cdot 993$
20	-994	-991	-988	-986
30	991	-987	-982	$\cdot 980$
40	-988	-982	$\cdot 977$	-973
50	-985	-978	-971	-966
1 - 0	-982	$\cdot 974$	-966	-959
20	-977	-967	$\cdot 956$	-946
40	-972	-958	-945	-933
2-0	-966	$\cdot 951$	-935	-922
20	-961	-943	-924	-909
40	$\cdot 956$	$\cdot 936$	$\cdot 915$	-897
3-0	$\cdot 950$	-928	-905	-885
20	-945	-920	-896	-873
40	-940	-912	-887	-861
4-0	-935	-905	-878	-850
20	-930	-898	-869	-839
40	-925	-891	-860	-829
5-0	-920	-884	-851	-819
20	$\cdot 915$	-877	-842	-809
40	-910	870	-834	-800
$6-0$	-905	. 863	-826	-791
- 20	-900	-857	-818	-782
40	-895	-851	$\cdot 810$	-773
7-0	-890	-846	-802	-764
20	-885	-839	$\cdot 791$	-756
40	-881	-833	$\cdot 787$	-748
8-0	-876	-826	$\cdot 781$	-740
20	-871	-820	-773	-732
40	-866	-813	$\cdot 765$	$\cdot 724$
$9-0$	-862	-808	$\cdot 759$	-717
20	-858	-802	-752	-709
40	- 854	$\cdot 796$	$\cdot 745$	$\cdot 701$
10-0	-850	$\cdot 790$	$\cdot 739$	-694
20	-845	$\cdot .784$.733	-687
40	$\cdot 841$	$\cdot 778$	726	-680

Table－No．II．－continued．

sidelona inclination．	$\begin{aligned} & \text { SLOPE } \\ & 1 \text { to } \end{aligned}$	$\operatorname{sLOPE}_{1 \frac{1}{2} \text { to }}^{1}$	$\begin{aligned} & \text { SLOPRE } \\ & 2 \text { to } 1 \end{aligned}$	$\begin{aligned} & \text { SLOPR } \\ & 2 \frac{1}{2} \text { to } \end{aligned}$
＇				
11 － 0	－836	$\cdot 772$	$\cdot 719$	－673
20	－832	－767	$\cdot 713$	－666
40	－828	－762	－707	－659
12－0	－824	$\cdot 758$	－701	－653
20	－820	$\cdot 753$	－695	－646
40	－816	$\cdot 748$	－689	－640
13－0	－812	$\cdot 743$	－683	－634
20	－808	$\cdot 738$	－677	－628
40	－804	－733	$\cdot 672$	－622
14－0	－800	－728	－667	－616
20	－796	－723	$\cdot 661$	－610
40	－792	－718	－656	－604
15－0	－788	$\cdot 713$	－650	－598
20	－784	－708	－645	－592
40	－780	－703	－640	－587
16－0	－777	－699	－635	－582
20	－773	－694	－630	－577
40	－769	－690	－625	－572
17 － 0	$\cdot 765$	－685	－620	－567
20	$\cdot 761$	－680	－615	－562
40	－757	$\cdot 676$	－610	－557
18－0	$\cdot 754$	$\cdot 672$	－606	$\cdot 551$

EXAMPLE OF APPLICATION OF TABLES．

Nature of earthwork．		$\dot{0}$		密范岕		Sidelong Inclination．		Tabular multipliers．		Required side distances．	
		${ }^{\sim}$				Left．	Righ	Left．	Right．	Left．	Right．
Cutting	46	30	1 tol	$10 \cdot 2$	25－2	$\begin{aligned} & \text { Dep. } \\ & 6^{\circ} 30^{\prime} \end{aligned}$	$\begin{aligned} & \text { El. } \\ & 6^{\circ} 0^{\prime} \end{aligned}$	－903	1－118	$22 \cdot 8$	28.2
do	7	d	do	7	21	620	440	$\cdot 900$	1.088	18.9	$22 \cdot 8$
do	48		do	$3 \cdot 4$	18.	60	60	$\cdot 905$	1－118	$16 \cdot 7$	$20 \cdot 6$
do	49	9	do	1.2	16.2	540	530	$\left\{\begin{array}{r} 1 \cdot 175 \\ \cdot 910 \end{array}\right\}$	1－106	15．5	17.9
Embank．		do	$1 \frac{1}{2}-1$	3	19.5	520	520	I－163	． 877	22.7	$17 \cdot 1$

The tabular multipliers corresponding to angles of elevation for cuttings, and depression for embankments, are taken from Table No. I.; and those corresponding to angles of depression for cuttings, and elevation for embankments, are taken from Table No. II. Whenever the product of the horizontal half width (in column 6), by a tabular number, is less than the half base, it is an indication that there will be both cutting and embankment on the same side of the centre stake. This is the case on the left side of stake No. 49 of the given example; and the required side distance, in this instance, is obtained by deducting from the half base, or 15 , the product of the height 1.2 by the slope of embankment $1 \frac{1}{2}$, and then multiplying this difference by the corresponding tabular number $1 \cdot 175$, taken from Table II., in accordance with the Formula No. III.
Formula for occasional use in computing the volume of a portion of a Cutting or Embankment between two consecutive centre pegs, when the sidelong inclination differs considerably at each peg.
I venture to submit the following investigation of the volume of earthwork having rapidly changing profiles; as any rule that would tend to the attainment of greater accuracy in the computation of cubic contents in such cases, might be sometimes applicable in this colony, where the great cost of earthworks renders precision in the estimated contents thereof a matter of very great importance.
The French have made long and complicated investigations in connexion with the subject of deblais and remblais, but their formule are too abstruse for any practical application, and their tables for facilitating ordinary computation of earthwork, are less convenient than Bidder's improved tables and some others in use by British engineers.
I am indebted to the French for the hypothesis of the mode in which the surface of the ground may be conceived to be generated in the following investigation; but the investigation itself, and comparatively simple formula obtained, are my own.

Let ABCDEFGH(Fig. V.) represent a portion of railway cutting between consecutive stakes, and let the sidelong angle of inclination $\mathbf{H} \boldsymbol{G} \mathbf{H}^{\prime}$ be not equal to the sidelong angle of inclination D C D' at the other end of this eartawork. In the first place it is evident that the surface $\mathbf{D} \mathbf{C G H}$ is not a plane surface, but a contorted surface, and it may be conceived to

Fig. 1

4g 3.

$\mathrm{F}_{10}^{\mathrm{C}}, \quad \pi$
Fig 6

[^0]: * A point being assumed as near the true position of the point D (Fig. I.) on the ground as can be determined by estimation, then the difference of level between that point and the central stake r, minus the heiglit \boldsymbol{B} н, would be the first approximate value of D N, which multiplied by ratios of slope for embankment, would give the first approximate value of cm ; which should be added in order to obtain the first approximate value of the side distance, в N , to в C , the half-width at formation level, and not to स o, the computed horizontal half-width for the height в н, as in Mr. Simm's treatise.

